Part Number Hot Search : 
6961SZ UT54ACS DEVICE C74VC 220CA AD7524LP W0402 SMDJ90CA
Product Description
Full Text Search
 

To Download AN3209 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  april 2011 doc id 17419 rev 2 1/42 AN3209 application note developing your m24lr64- r datalogger application for temperature acquisition introduction the m24lr64-r is a dual in terface eeprom. since it ha s both an 13.56 mhz iso 15693 rfid and a 400-khz i 2 c interface, the device is a good solution for rf-enabled sensors for which st has developed a reference design. one of the main benefits brought by the m24lr64-r is that the sensor data can be accessed in read and write mode without consuming any on-board power. this application note presents a practical useful application for the m24lr64-r datalogger. it describes an autonomous battery-powered datalogger able to record and store 64 kbits of temperature data using the m24lr64-r dual interface eeprom (i 2 c and rf). the datalogger microcontroller is an stm8l101k3. it communicates with the m24lr64-r using its serial interface and controls an stts75 digital temperature sensor. an on-board demonstration firmware, the m24lr64-r_datalogger_application_firmware , stored in the stm8l101k3 memory selects and controls the temperature acquisition through a rfid reader connected by a usb cable to a pc. the application is delivered with a pc software, the m24lr64- r_datalogger_application_software , to configure and control the datalogger, as well as download and display the temperature values. st provides all the resources required to develop your own datalogger application and pc software: source files of the data logger firmware (m24lr64- r_datalogger_application_firmware): they allow implementing i 2 c communications between the m24lr64-r, the stts75, and the stm8l101k3. source files of the pc software (m24lr64- r_datalogger_applicatio n_software): they control rf communications between the m24lr64-r and an rfid reader. basic information about the m24lr64-r, stts75, and stm8l101k3 component characteristics, as well as a description of the algorithms for the datalogger firmware and pc software are provided in this document. reference documents m24lr64-r datasheet ?m24lr64-r tool driver install guide? user manual (um0863) ?using the m24lr64-r datalogger reference design? user manual (um0925) ?how to manage m24lr64-r data transfers from the i2c bus or an rf channel? application note (an3057) stm8l101k3 datasheet stm8l101 reference manual (rm0013). stts75 datasheet. the documents are available from http://www.st.com/dualeeprom. www.st.com
contents AN3209 2/42 doc id 17419 rev 2 contents 1 overview of m24lr64-r datalog ger application . . . . . . . . . . . . . . . . . . 6 1.1 board architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 component overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 m24lr64-r dual interface eeprom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 m24lr64-r main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 m24lr64-r i 2 c interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 m24lr64-r rf interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 datalogger memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 stm8l101k3 8-bit low power microcontroller . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 stm8l101k3 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 stm8l101k3 i 2 c interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 stm8l101k3 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 digital temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 stts75 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 stts75 i 2 c interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 stts75 i 2 c commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.4 temperature format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 installing the datalogger package on your computer . . . . . . . . . . . . . 22 4 developing, compiling and debugging your datalogger firmware . . . 24 4.1 installing the datalogger application firmware . . . . . . . . . . . . . . . . . . . . . 24 4.2 software tool-chain overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.1 st visual develop (stdv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.2 c compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 description of the datalogger firmware . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.1 main routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.2 acquisition algorithm functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 pc software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 description of the pc software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
AN3209 contents doc id 17419 rev 2 3/42 5.1.1 start button algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.2 stop button algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.1.3 trace graph button algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.1.4 timer management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 appendix a temperature acquisition datalogger schematics . . . . . . . . . . . . . . 33 appendix b m24lr64-r rf commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 b.1 inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 b.2 reset to ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 b.3 read single block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 b.4 read multiple block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 b.5 write single block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 b.6 estar commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 appendix c stts75 i 2 c commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 c.1 acquire temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 c.2 read acquired temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
list of tables AN3209 4/42 doc id 17419 rev 2 list of tables table 1. m24lr64-r signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 table 2. i 2 c page write function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 3. i 2 c buffer read function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 table 4. m24lr64-r-r memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 table 5. status byte values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 table 6. overwrite byte values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 table 7. delay byte values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 table 8. relationship between temperature and digital output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 table 9. component values for schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 table 10. inventory_datalogger() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 11. resettoreadyrf_datalogger() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 12. readrf_single_datalogger() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table 13. readrf_multiple_datalogger() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table 14. writesingleblockrf_datalogger(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 table 15. i2c_ss_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 16. i2c_ss_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 table 17. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
AN3209 list of figures doc id 17419 rev 2 5/42 list of figures figure 1. datalogger front side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 figure 2. datalogger back side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 figure 3. stm8l101k3/m24lr64-r/stts75 communication block diagram. . . . . . . . . . . . . . . . . . . 7 figure 4. datalogger power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 5. m24lr64-r pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 6. m24lr64-r functional block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 7. write i 2 c frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 8. read i 2 c frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 figure 9. feig software support for windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 10. stm8l101k3 32-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 11. stm8l101k3 functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 12. stts75 temperature sensor pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 13. stts75 temperature sensor block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 14. typical pointer set configuration register write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 15. typical pointer set followed by a read for 2-byte register. . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 16. m24lr64-r_datalogger_application_software folder structure . . . . . . . . . . . . . . . . . . . . 22 figure 17. m24lr64-r_datalogger_application_software start menu . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 18. needed material to compile and run an application on stm8l101k3 . . . . . . . . . . . . . . . . 24 figure 19. main routine algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 20. acquisition_running algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 21. start_acquisition/stop_acquisition/acquisition update algorithms . . . . . . . . . . . . . . . . . . . . 27 figure 22. m24lr64-r_datalogger_application_software home page . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 23. start button algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 24. stop button algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 25. trace graph algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 26. dynamic view - timer algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 27. temperature acquisition datalogger schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
overview of m24lr64-r datalogger application AN3209 6/42 doc id 17419 rev 2 1 overview of m24lr64-r datalogger application 1.1 board architecture the entire circuit is implemented on a 90x5 0 mm pcb board which integrates the three st components (m24lr64-r, stts75, and stm8l101k3) plus a 20x40 mm antenna connected to the dual eeprom rf interface. the system is supplied from a 3 v battery (br2330) fixed on the back side of the pcb as shown in figure 2 . the board is equipped with a connector which provides an easy access to the stm8l101k3 swim signal required to program the microcontroller and debug the firmware (see figure 2 ). this reference board allows the sda and the scl i 2 c signals to be probed using dedicated connectors. figure 1. datalogger front side view figure 2. datalogger back side view temper a t u re s en s or ( s tt s 75) d ua l interf a ce eeprom (m24lr64-r) microcontroller ( s tm 8 l) antenn a ai1 8 019 b ai1 8 020 b s wim connector b a ttery
AN3209 overview of m24lr64-r datalogger application doc id 17419 rev 2 7/42 1.2 communication interfaces the communications between the stm8l101k3, m24lr64-r, and stts75 are performed through an i 2 c bus. the stm8l101k3 acts as the i 2 c master, and both the m24lr64-r and stts75 act as slaves. the dual interface eeprom is also connected to an antenna to communicate with the rfid reader. refer to figure 3 for an overview of the communication interfaces. figure 3. stm8l101k3/m24lr64-r/stts75 communication block diagram 1.3 power management the datalogger is a low power application requiring a particular power management. the entire power supply is managed by the microcon troller which is the only device directly powered by the battery (see figure 4 ). both slave nodes and i 2 c power supply (v cc ) are powered by the stm8l101k3 microcontroller. figure 4. datalogger power management 3443 temperaturesensor -,2  $ual)nterface %%02/- 3lave )# )# )# !ntenna 3lave -aster -icrocontroller 34-, !) !) "attery -aster -icrocontroller 34-, $ $ $ 6 $$ 3443 6 $$ -,2 2 6 ## 3$! 3#, 6 $$
component overview AN3209 8/42 doc id 17419 rev 2 2 component overview this section describes the main characteristic s of the three stmicroelectronics components (m24lr64-r, stts75, and stm8l101k3). it explains how to configure them for the temperature acquisition application, and it describes the corresponding code function and examples. 2.1 m24lr64-r dual interface eeprom 2.1.1 m24lr64-r main features the m24lr64-r device is a dual-access elec trically erasable programmable memory (eeprom). it features an i 2 c interface and can be operated from a v cc power supply. it is also a contactless memory powered by the received carrier electromagnetic wave. the m24lr64-r is organized as 8192x8 bits in the i 2 c mode and 2048x32 bits in the iso 15693 and iso 18000-3 mode 1 rf mode. figure 5. m24lr64-r pinout figure 6. m24lr64-r functional block diagram table 1. m24lr64-r signal names signal name function direction e0, e1 chip enable input sda serial date i/o scl serial clock input 3$! 6 33 3#, % !# % 6 ## !# !)         %%02/- 2owdecoder ,atch ,ogic 2& )  # 2&6 ## #ontact6 ## 3#, 3$! 6 33 6 ## !# !# 0owermanagement !)
AN3209 component overview doc id 17419 rev 2 9/42 2.1.2 m24lr64-r i 2 c interface the m24lr64-r can work both in standard and fast i 2 c modes. the device carries a built- in 4-bit device type identifier code (1010b) compliant with the i 2 c bus definition. for the demonstration application, the stm8l101k3 master operates at a speed of 100 khz. the m24lr64-r behaves as a slave for the i 2 c protocol with all memory operations synchronized by the serial clock. the device i 2 c address is 1010 0000b (0xa0) the i 2 c master writes and reads to/from the m24lr64-r memory. these basic operations are performed by the m24l r64-r_datalogger_applicat ion_firmware by calling i2c_ee.c library functions. write operations to write to the memory, the i 2 c master sends write commands to the m24lr64-r. the command frame must be compliant with the format described in figure 7 . the m24lr64-r_datalogger_application_firmware calls the i2c_ee_pagewrite function which programs a set of by tes into the eeprom (see ta b l e 2 for a description and an example). figure 7. write i 2 c frame format ac0, ac1 antenna coils i/o v cc supply voltage v ss ground table 1. m24lr64-r signal names (continued) signal name function direction 3tart 0age7rite $ev3elect "yteaddress "yteaddress $atain $atain !) 3top $atain. !#+ !#+ !#+ !#+ 27 !#+ !#+
component overview AN3209 10/42 doc id 17419 rev 2 read operations to read from the memory, the i 2 c master can send read commands to the m24lr64-r. the command frame must be compliant with the format described in figure 8 . the m24lr64-r_datalogger_application_firmware calls the i2c_ee_bufferread function which reads a set of bytes from the eeprom (see ta b l e 3 for a description and an example). figure 8. read i 2 c frame format table 2. i 2 c page write function function description function name i2c_ee_pagewrite(uint8_t* pbuffer, uint16_t writeaddr, uint8_t numbytetowrite) parameters pbuffer : pointer to the buffer containing the dat a to be writte n to the eeprom. writeaddr : internal address of the eeprom where the data must be written. numbytetowrite : number of bytes to be written into the eeprom. return value errorstatus: succeeded failed example i2c_ee_pagewrite(s_data, 0x0002, 0x01) writes the content of the buffer pointed by sedate at address 0x01. table 3. i 2 c buffer read function function description function name i2c_ee_bufferread(uint8_t* pbuffer, uint16_t readaddr, uint8_t numbytetoread) parameters pbuffer : pointer to the buffer where the data read from the eeprom are stored. readaddr :internal eeprom address from which the read operation is performed. numbytetoread : number of bytes to read from the eeprom. return value errorstatus: succeeded failed example i2c_ee_bufferread (s_data, 0x0002, 0x01) reads one byte from memory address 0x01, and stores the value in the buffer pointed by s_data points. !)d $ataout. 3tart $evselect
"yteaddress "yteaddress 3equential 2andom 2ead 3tart $evselect
$ataout 3top !#+ !#+ !#+ 27 !#+ !#+ 27 !#+ ./!#+
AN3209 component overview doc id 17419 rev 2 11/42 2.1.3 m24lr64-r rf interface in iso 15693/iso 18000-3 1 rf mode, the m24lr64-r is accessible via the 13.56 mhz carrier electromagnetic wave. incoming data are demodulated from the received signal amplitude modulation (ask: am plitude shift keying). the re ceived ask wave is 10% or 100% modulated with a data rate of 1.6 kbit/s using the 1/256 pulse coding mode, or 26 kbit/s using the 1/4 pulse coding mode. outgoing data are generated by the m24lr64-r load variation using manchester coding with one or two subcarrier frequencies at 423 khz and 484 khz. data are transferred from the m24lr64-r at 6.6 kbit/s in low data rate mode and 26 kbit/s high data rate mode. the m24lr64-r supports the 53 kbit/s in high data rate mode in one subcarrier frequency at 423 khz. the m24lr64-r follows the iso 15693/iso 18000-3 mode 1 recommendation for radio-frequency power and signal interface rf commands are sent and decoded by the rfid reader. the demonstration application can operate with feig and estar usb readers, for compliance with the available m24lr64- r kits: development kit: feig reader demonstration kit: feig reader starter kit: estar reader the commands depend on the type of reader. the pc m24lr64-r_datalogger_application_softw are is developed in visual basic. it includes functions allowing to operate the datalogger with both feig and estar readers: inventory reset to ready read single block write single block read multiple block refer to appendix b: m24lr64-r rf commands for a detailed description of these functions.
component overview AN3209 12/42 doc id 17419 rev 2 feig commands feig readers are delivered with a package to develop and program application software in ainsi-c/c++, and visual basic (see figure 9 ). figure 9. feig software support for windows estar commands estar readers are delivered with a package to develop and program application software in ansi-c/c++, and visual basic. the following dll file s are provided: for visual basic: hiddll.bas for c/c++: hiddll.h, hiddll.lib 2.1.4 datalogger memory mapping the m24lr64-r memory is used as described in ta bl e 4 . the first two blocks of sector 0 contain critical system parameters, and application data. &%#/- &%53" &%)3# !pplications ,evel &unctionlibraries$,, &%4#0 &%&5 /")$)3#.%4 .%4library *ava.%4  .otfreeof charge 7indows driver $river /")$53"393 23 23 53" +ernel ,evel 7indows driver ,!. /")$)3#* *avalibrary &%$- # classlibrary .%4 .%4 !) table 4. m24lr64-r-r memory organization sector number rf block address i 2 c byte address bit [31:24] bit [23:16] bit [15:8] bit [7:0] 0 0 0 rfu delay overwrite status 0 1 4 rfu rfu nb temp[1] nb temp[0] 0 2 8 temp2 [1] temp2 [0] temp1 [1] temp1 [0] 0 3 12 temp4 [1] temp4 [0] temp3 [1] temp3 [0] 0 4 16 temp6 [1] temp6 [0] temp5 [1] temp5 [0] 0 5 20 temp8 [1] temp8 [0] temp7 [1] temp7 [0]
AN3209 component overview doc id 17419 rev 2 13/42 system bytes status byte the status byte shows the current application state. refer to ta b l e 5 for the meaning of each possible value. overwrite byte during the acquisition, the temperature values are stored in the memory. when the memory is full, the application can either stop or rewrite data starting from the first address, depending on the value of the overwrite byte (see ta bl e 6 ). delay byte the delay byte contains the value of the acquisition rate (see ta bl e 7 ): nb temp bytes nbtemp bytes contains the number of temperature values stored in the memory. it consists in two hexadecimal-coded bytes. the number of temperature values is the concatenation of nb temp[1] and nb temp[0] where nb temp[0] is the lsb and nb ... ... ... ... ... ... ... 63 2016 8064 temp4092 [1] temp4092 [0] temp4091 [1] temp4091 [0] table 5. status byte values status byte value description 0x11 start 0x22 paused 0x33 running 0x44 stopped 0x55 update 0x66 other table 6. overwrite byte values overwrite byte value description 0x11 overwrite authorized any other values overwrite non authorized table 7. delay byte values delay byte value description (s) comment 0x0d 1 temperature measured and saved every second 0x10 30 temperature measured and saved every 30 seconds table 4. m24lr64-r-r memory organization sector number rf block address i 2 c byte address bit [31:24] bit [23:16] bit [15:8] bit [7:0]
component overview AN3209 14/42 doc id 17419 rev 2 temp [1] is the msb. for example, if nb temp [0] equals 0xf3 and nb temp [1] equals 0x02, then the number of acquired temperature values is 0x02f3 (755d). application data temp bytes tempx[0] and tempx[1] contain the raw temperature (see ta bl e 4 ), x ranging from 1 to 4092. for example if tempx[0] = 0x1e and tempx[1] is 0x80, the concatenation of these two bytes gives the temperature value that is 0x1e80 corresponding to 30.5 c (according to the temperature sensor format). the temperature format conversion is performed by issuing the following visual basic command: function convert_temp (temptoconvert as string) as single
AN3209 component overview doc id 17419 rev 2 15/42 2.2 stm8l101k3 8-bit low power microcontroller 2.2.1 stm8l101k3 overview the stm8l101k3 (part number stm8l101k3t6) 8-bit low power microcontroller features an enhanced stm8 cpu core which provides an increased processing power (up to 16 mips at 16 mhz) while maintaining the advantages of a cisc architecture of improved code density, 24-bit linear addressing space and an optimized architecture for low power operations (see figure 10 and figure 11 ). for more details refer to the stm8l101k3 datasheet and to the stm8l101xx reference manual (rm0013). figure 10. stm8l101k3 32-pin package pinout                  6 $$ 6 33 0!  ( 3 0!  ( 3 .234 0!(3 0#(3 53!24?48 0#(3 53!24?28 0#)#?3#, 0"(3 30)?. 33 0"(3 30)?3#+ 0"(3 30)?- /3) 0"(3 30)?-)3/ 0#)#?3 $! 0"(3 4)-?#(#/-0?#(   0!(3 37)-"%%0)2?4)- 0#(3 53!24?#+##/ 0$(3 4)-?#(#/-0?#( 0"(3 4)-?#(#/-0?#( 0"(3 4)-?#(#/-0?#( 0"(3 4)-?42)'#/-0?#( !)
component overview AN3209 16/42 doc id 17419 rev 2 figure 11. stm8l101k3 functional block diagram 2.2.2 stm8l101k3 i 2 c interface the stm8l101k3 i 2 c peripheral allows multimaster and slave communications with bus error management in standard (up to 100 khz) or fast (up to 400 khz) mode. in the demonstration datalogger application, on ly the single master mode is used. i 2 c synchronous communications require only two signals: scl (serial clock line) and sda (serial data line). the corresponding port pins must be configured as floating inputs. refer to the stm8l101k3 datasheet for additional details. to manage errors resulting from i 2 c and rf arbitration, an error management mode has been implemented in the i 2 c library, i2c_ee.c , called by the m24lr64- r_datalogger_application_firmware (see an3057 for details). 34-  -(z int 2# #lock controller #l oc ks !75 "eeper !ddressanddatab us  k(zint2# $ebugmodule )# 30 ) 53!24 5pto+bytes &lashm emory controller +bytes tocoreand per ipherals )7$' #ore  bit4imer 37)- upto -(z .estedinterrupt upto external multimaster  bit4ime r 32!- interrupts including upto+bytes da ta %% 02 /- 0owe r 6oltreg 6 $$ 6 $$  6 $$ 6 6 33 6 .2 34 0/20$2 to 2e se t 0ort! 0ort " 0ort # 0ort $ 28 48 #+ 3$! 3 # , 0!;= 0";= 0#;= 0$;= -/3 ) -) 3/ 3#+ . 3 3 "%%0 37 ) - #/-0?2%& )nfra redinter fa ce )2?4)-  bit4imer 4)- ?#( ;= 4)- ?#( ;= 4)- ?42) ' 4)- ?42) ' !) #/-0 #/-0
AN3209 component overview doc id 17419 rev 2 17/42 2.2.3 stm8l101k3 configuration clock configuration the stm8l101k3 microcontroller is configured as follows for the demonstration m24lr64- r_datalogger_application_firmware: master clock set to 2 mhz (minimum) i2c, timer 2 (tim2), auto wakeup clocks enabled. this is done by calling the following func tions of the stm8l10 1 firmware library: clk_masterprescalerconfig(clk_masterprescaler_hsidiv8); clk_peripheralclockconfig(clk_peripheral_i2c, enable); clk_peripheralclockconfig(clk_peripheral_tim2, enable); clk_peripheralclockconfig(clk_peripheral_awu, enable); i/o configuration three dedicated pins are set in output mode to power the dual interface eeprom, the temperature sensor, and the i 2 c bus. this is done by using the following stm8l101 firmware library function : gpio_init (gpiod,gpio_pin_5 ? gpio_pin_6 ? gpio_pin_7, gpio_mode_out_pp_low_fast); this example is illustrated in figure 4 . note: it is recommended to set unused pins in input mode to minimize power consumption. auto wakeup configuration the auto wakeup (awu) provides an internal wakeup timebase that can be used when the microcontroller enters active-halt power saving mode. this timebase is clocked by the low speed internal (lsi ) rc oscillator clock. to ensure the best possible accuracy when using the lsi clock, its frequency can be measured with tim2 timer input capture 1, by calling the awu_autolsicalibration functions of the stm8l101 firmware library (see code example below): awu_autolsicalibration (); awu_init (awu_timebase_1s); awu_cmd (enable); /*the datalogger fw then issues the halt instruction to switch the microcontroller to active-halt low power mode. in the following function, command3 will automatically be executed 1second after command2 according to the previous configuration */ void function (void) { command1 ; command2 ; halt ; command3 ; }
component overview AN3209 18/42 doc id 17419 rev 2 2.3 digital temperature sensor 2.3.1 stts75 main features the stts75 is a high-precision cmos digital temperature sensor ic with a programmable 9- to 12-bit analog-to-digital (adc) converter and an i 2 c-compatible serial digital interface.. the stts75 typically accuracy is 3 c over the full temperature measurement range of ?55 to 125 c, and 2c in the ?25 to 100c range. it operates from a 2.7 to 5.5 v supply voltage, with a typical supply current of 75 a at 3.3 v. for the demonstration datalogger application, the sensor is configured to the default resolution settings that is 9 bits, to achieve a temperature resolution of 0.5 c. the stts75 is factory-calibrated and requires no external components to measure temperature. figure 12. stts75 temperature sensor pinout 1. sda and os /int are open drain. figure 13. stts75 temperature sensor block diagram  !  '.$ !  !  3#, 3$!  6 $$ /3).4  !)        !)a 4emperature 3ensorand !nalog to $igital #onverter!$#   !  !  6 $$ !  '.$ #onfiguration2egister 3$! 3#, /3  wire)  #)nterface 0ointer2egister #ontroland,ogic #omparator 4emperature2egister 4(933et0oint2egister 4/33et0oint2egister
AN3209 component overview doc id 17419 rev 2 19/42 2.3.2 stts75 i 2 c interface the stts75 has a simple 2-wire i 2 c-compatible digital serial interface which allows to access the data stored in the temperature register at any time. it communicates via the serial interface with a master controller which operates at speeds up to 400 khz. however, for the demonstration datalogger application the master operates at a speed of 100 khz. a0, a1, and a2 pins select the address and allow to connect to up to 8 devices on the same bus without address conflict. for the demonstration application, a0, a1 and a2 are connected to ground. stts75 i 2 c device address is 1001 0000b (0x90). 2.3.3 stts75 i 2 c commands the i 2 c master requests the sensor to acquire a temperature value and read the data from the sensor register. these operations ar e performed by callin g functions of the i 2 c library, i2c_ee.c . refer to appendix c: stts75 i2c commands for a detailed description of these stts75 functions. acquire temperature to configure the temperature sensor in temperature acquisition mode, the i 2 c master sends a pointer set configuration register write frame as shown in figure 14 . this is done by calling the i2c_ss_config (uint16_t configbytes) function. figure 14. typical pointer set configuration register write !)b    3tart by -aster !ddress"yte 0ointer"yte !#+ by 3443 !#+ by 3443 !#+ by 3443 3top #ond by -aster !!!7  $$$$$ $ $ #onfiguration"yte
component overview AN3209 20/42 doc id 17419 rev 2 read acquired temperature to read the 2 bytes temperature register, the i 2 c master must send a pointer set configuration register write frame followed by a 2-byte read frame (see figure 15 ). this operation is ma naged by calling the i2c_ss_bufferread(unit8_t* pbuffer, unit16_t readaddr, unit8_t numberbytetoread) function. figure 15. typical pointer set followed by a read for 2-byte register 2.3.4 temperature format ta bl e 8 shows the relationship between the output digital data and the external temperature for 9 to 12-bit resolution. the left-most bit in the output data stream controls temperature polarity information for each conversion. if the sign bit is '0', the temperature is positive and of the sign bit is '1', the temperature is negative. !)b     2epeat 3tart by -aster !ddress"yte -ost3ignificant$ata"yte ,east3ignificant$ata"yte !#+ by 3443 !#+ by -aster .o!#+ by -aster 3top #ond by -aster    ! ! ! 2 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $    3tart by -aster !ddress"yte 0ointer"yte !#+ by 3443 !#+ by 3443 !!!7 $$ table 8. relationship between temperature and digital output temperature (c) sign number of bits used by conversion resolution 9101112 always zero digital output (hex) 12-bit resolution 0000 11-bit resolution 0 0000 10-bit resolution 0 0 0000 9-bit resolution 0 0 0 0000 +125 0 111 1101 0 0 0 0 0000 7d00 +25.0625 0 001 1001 0 0 0 1 0000 1910 +10.125 0 000 1010 0 0 1 0 0000 0a20 +0.5 0 000 0000 1 0 0 0 0000 0080
AN3209 component overview doc id 17419 rev 2 21/42 0 0 000 0000 0 0 0 0 0000 0000 ?0.5 1 111 1111 1 0 0 0 0000 ff80 ?10.25 1 111 0101 1 1 1 0 0000 f5e0 ?25.0625 1 110 0110 1 1 1 1 0000 e6f0 table 8. relationship between temperature and digital output (continued) temperature (c) sign number of bits used by conversion resolution 9101112 always zero digital output (hex)
installing the datalogger package on your computer AN3209 22/42 doc id 17419 rev 2 3 installing the datalogger package on your computer to install the datalogger package on your computer: 1. execute the setup.exe file available from http://www.st.com/dualeeprom to install the m24lr64-r_datalogger_application_software and copies the following folders on your computer (see figure 16 ): ? usb driver ? .dll files ? source code of the m24lr64-r_datalogger_application_firmware the rfid reader must not be connected to your pc. 2. when the installation is complete, connect the reader to the pc through an usb cable. 3. to install the usb driver, follow the step s described in section 31. of user manual um0863 section 3.1. figure 16. m24lr64-r_datalogger_application_software folder structure
AN3209 installing the datalogger package on your computer doc id 17419 rev 2 23/42 figure 17. m24lr64-r_datalogger_application_software start menu
developing, compiling and debugging your datalogger firmware AN3209 24/42 doc id 17419 rev 2 4 developing, compiling and debugging your datalogger firmware 4.1 installing the datalogg er application firmware the source code of the demonstration m2 4lr64-r_datalogger_application_firmware is then available under c:\program files\m24lr64- r_datalogger_application\sources\m24lr64-r_datalogger_application_firmware (see figure 16 ) or by clicking start > m24lr64-r_datalogger_application > m24lr64- r_datalogger_application_firmware . 4.2 software tool-chain overview to develop, compile and run an application software on an stm8l101k3 microcontroller, the following software tool-chain components are required (see figure 18 ): integrated development environment (ide) composed of the st visual develop (stdv) and the st visual programmer software interface (stvp). a c complier the r-link hardware figure 18. needed material to compile and run an application on stm8l101k3 4.2.1 st visual develop (stdv) stvd is a full-featured development environment. it is a seamless integration of the cosmic and raisonance c compilers for stm8 microcon troller family. stdv software is available from http://www.st.com. to install stdv, download the installation software and follow each step of the installation wizard. when the installation is comple te, the executable is available under start>programs>st toolset > develo pment tools> st visual develop . 4.2.2 c compilers the c compilers are integrated into the st dv development environment. they allow to directly configure and control the building of your application through an easy-to-use graphical interface. the demonstration application uses stm8 cosmic c compiler (free version up to 16 kbytes of code). 3 4 6 is ual$e velop 2 ,).+ $ata,ogger !)
AN3209 developing, compiling and debugging your datalogger firmware doc id 17419 rev 2 25/42 cosmic compiler is available with the related documentation at http://www.cosmicsoftware.com/download_stm8_16k.php. note: 1 you have to request a free license to use the compiler. 2 refer to http://www.cosmic-software.com and http://www.raisonance.com for more information on complier download, installation and configuration. 4.3 description of the datalogger firmware the m24lr64-r_datalogger_application_firmware implemented in the stm8l101k3 is low power oriented. it manages two power consumption modes: active consumption mode where the operations are executed by the application. low consumption mode: when no operation is ongoing, the application switches to low consumption mode for a predefined delay. the following sections describe the main and the acquisition routines, where the red rectangles represent functions. each function is described in details in a dedicated section. 4.3.1 main routine figure 19 describes the flowchart of main.c file algorithm. main.c is located at c:\program files\m24lr64-r_datalogger_application\sources\m24lr64- r_datalogger_application_firmware or by clicking start > m24lr64- r_datalogger_application > m24lr64-r_datalogger_application_firmware . the datalogger firmware is based on an infinite loop. the first operation checks the status byte stored in the m 24lr64-r dual mode eeprom . this byte indicates the state of the datalogger (started or stopped).
developing, compiling and debugging your datalogger firmware AN3209 26/42 doc id 17419 rev 2 figure 19. main routine algorithm !) 3tatus "//4 stop?acquisition 3tatus  acquisition?running start?acquisition acquisition?update 5npowersensor 5npower)#bus 3witchto!ctive haltmode 34!24 25..).' 50$!4% %,3% 9%3 ./ 0ower)#bus 0owerdualmode %%02/- 2eaddualmode %%02/-3tatusbyte 5npower dualmode%%02/-
AN3209 developing, compiling and debugging your datalogger firmware doc id 17419 rev 2 27/42 4.3.2 acquisition algorithm functions figure 20 , figure 21 , and figure 23 describe the algorithms corresponding to the red- rectangle functions of the main routine (see figure 19 ). figure 20. acquisition_running algorithm figure 21. start_acquisition/stop_acqui sition/acquisition update algorithms acquisition?running -emory&ull 2eaddualmode %%02/- /verwrite !uthorized start?acquisition stop?acquisition 9%3 9%3 ./ ./ writethesensorto acquireatemperature readthesensortogetthe acquiredtemperature 0owertemperature sensor 7ritethetemperaturein thedualmode%%02/- !) #onfigure!75with$elay "yte6alue start?acquisition readdualmode$elay"yte writedualmode3tatus"yte 25..).' writedualmode.umberof temperature"ytesx writedualmode$elay "ytes stop?acquisition writedualmode3tatus"yte 34/00%$ acquisition?update readdualmode$elay"yte #onfigure!75with$elay "yte6alue writedualmode3tatus"yte 25..).' !)
pc software AN3209 28/42 doc id 17419 rev 2 5 pc software once the setup.exe file is installed, the m24lr6 4-r_datalogger_application_software project is available under c:\program files\m24lr64- r_datalogger_application\sources\m24lr64-r_datalogger_application_software , or from the menu start > m24lr64-r_datalogger_application > m24lr64- r_datalogger_application_software . the m24lr64-r_datalogger_application_softwar e is developed with visual basic 6.0. double click on data logger\source code\sof tware\launch project.vbp to open the corresponding workspace in visual basic. 5.1 description of the pc software a user interface features all the functions and options to launch and control the temperature sensing datalogger application (see figure 22 ): start/stop button (see section 5.1.1 ) stop button (see section 5.1.2 ) trace graph button (see section 5.1.3 ) dynamic view checkbox (see section 5.1.4 ) figure 22. m24lr64-r_datalogger_application_software home page
AN3209 pc software doc id 17419 rev 2 29/42 5.1.1 start button algorithm in data acquisition mode, clicking the start button from the menu writes the start value in the status byte (see section : system bytes ) via the rf interface and starts data acquisition. figure 23 shows the start button algorithm. figure 23. start button algorithm !) 3end)nventorycommand 2ead3tatus?"yte 3tatus?"yte 34!24 ,owbattery messageappears 3witch3tartbuttonin stopbutton 7rite3tatus?"yte34!24 2ead$elay?"yte $elay?"yte s !uthorize$ynamicview 3tart4imer 9%3 ./ 9%3 ./ 4hereisno$ata,oggerin thereaderfield 35##%33 &!),
pc software AN3209 30/42 doc id 17419 rev 2 5.1.2 stop button algorithm in data acquisition mode, clicking the stop bu tton from the menu writes the stop value in the application status byte (see section : system bytes ) via the rf interface and stops data acquisition. figure 24 shows the stop button algorithm. figure 24. stop button algorithm 5.1.3 trace graph button algorithm clicking the trace graph button from the menu downloads all the acquired temperature values stored in the m24lr64-r memory through the rf interface, and displays a graphical representation of these data. when the delay is set to 1 s, the window displays a checkbox that allows the user to activate a dynamic view. figure 25 shows the trace graph algorithm. 2ead3tatus?"yte 3tatus?"yte 34!24 ,owbattery messageappears 3witch3topbuttonin 3tartbutton 7rite3tatus?"yte34/0 !uthorize$ynamicview 3top4imer 9%3 ./ !)
AN3209 pc software doc id 17419 rev 2 31/42 figure 25. trace graph algorithm 5.1.4 timer management when the timer function is enabled, it is executed once per second. this function is used for graphic animations such as dynamic view, periodic thermometer refresh, display of the number of acquisition values, and meteorological pictogram. as an example, when the dynamic view option box is checked and as long as the datalogger stays in the reader field, the acquired temperature values are automatically added to the graph each second (see figure 26 for a description of the timer function used in conjunction with the dynamic view). refer to um0925 for a description of the other animations. !) 3end)nventorycommand 2ead3tatus?"yte 3tatus?"yte 25..).' 4raceagraphofstored temperatures 2ead$elay?"yte $elay?"yte s 3tart4imer 9%3 ./ 4hereisno$ata,oggerin thereaderfield 35##%33 &!), 9%3 ./ 3witch4race'raphbuttonin 2efresh'raphbutton !uthorize$ynamicview
pc software AN3209 32/42 doc id 17419 rev 2 figure 26. dynamic view - timer algorithm 2ead.b4emp?"yte 4imer $isplaythenumberof3tored 4emperatures 3how$ynamicview#heck"ox 2eadthelastacquired temperature $isplaythelastacquired temperature )s$ynamic view %nabled  9%3 ./ (ide$ynamicview#heck"ox $ynamicview #heck"ox #hecked !ddthelastacquired temperaturetothegraph un#hecked 4hereisno$ata,oggerin thereaderfield 35##%33 &!), !) 7aitfors
AN3209 temperature acquisition datalogger schematics doc id 17419 rev 2 33/42 appendix a temperature acquisition datalogger schematics figure 27 and ta b l e 9 describe the electrical schematics of the datalogger for temperature acquisition.
temperature acquisition da talogger schematics AN3209 34/42 doc id 17419 rev 2 figure 27. temperature acquisi tion datalogger schematics
AN3209 temperature acquisition datalogger schematics doc id 17419 rev 2 35/42 table 9. component values for schematics component quantity description u1 1 m24lr64-r u2 1 stm8l101k3 u3 1 stts75 r1 & r2 2 19 k r3 1 10 k c1 1 100 nf j1 1 connector
m24lr64-r rf commands AN3209 36/42 doc id 17419 rev 2 appendix b m24lr64-r rf commands the m24lr64-r_datalogger_application_software uses the usb driver library to control rfid readers. the library is written in visual basic. it is available under c:\program files\m24lr64-r_datalogger_application\sources\m24lr64- r_datalogger_application_software or from start > m24lr64- r_datalogger_application > m24lr64-r_datalogger_application_software . b.1 inventory the iso 15693 inventory command is performed by calling the inventory_datalogger() function: function inventory_datalogger() as integer b.2 reset to ready the reset to ready iso 15693 command is performed by calling resettoreadyrf_datalogger() function: f unction resettoreadyrf_datalogger() as integer table 10. inventory_datalogger() function description prototype inventory_datalogger() parameters none returned value i_result : function status succedded failed table 11. resettoreadyrf_datalogger() function description prototype resettoreadyrf_datalogger() parameters none returned value i_result : function status succedded failed
AN3209 m24lr64-r rf commands doc id 17419 rev 2 37/42 b.3 read single block the read single block iso 15693 command is performed by calling the readrf_single_datalogger() function. . b.4 read multiple block the read multiple bloc k iso 15693 command is performed by calling the readrf_multiple_datalogger() function: . table 12. readrf_single_datalogger() function description prototype function readrf_single_datalogger (lngaddlow as long , lngdatasize as long , lngnbbyteaddress as long ) as string parameters lngaddlow : address the read operation starts from lngdatasize : number of data bytes to be read lngnbbyteaddress : number of bytes used to code the address returned value string example readrf_single_datalogger(0, 4, 2) returns the 4 bytes read from address 0 coded on 2 bytes. table 13. readrf_multiple_datalogger() function description prototype function readrf_multiple_datalogger (lngaddlow as long , lngrownumber as long , lngdatasize as long , lngnbbyteaddress as long ) as string parameters lngaddlow: address the read operation starts from lngrownumber : number of blocks to be read (maximum 32) lngdatasize : number of bytes per block lngnbbyteaddress: number of bytes used to code the address returned value string example readrf_multiple_datalogger(0,32,4,2) returns in 32*4 bytes read from the address 0 coded on 2 bytes.
m24lr64-r rf commands AN3209 38/42 doc id 17419 rev 2 b.5 write single block the write single block iso 15693 command is performed calling the readrf_multiple_datalogger() function writesingleblockrf_datalogger() function: . b.6 estar commands all previous visual basic functions are compatible with estar readers. table 14. writesingleblockrf_datalogger() function description prototype function writesingleblockrf_datalogger( lngadd as long , strdata as string , lngdatasize as long , lngnbbytesaddress as byte ) as integer parameters lngadd : address where the data must be written strdata: string containing the data to be written lngdatasize: number of data bytes to be written lngnbbytesaddress : number of bytes used to code the address returned value errorstatus: succeeded failed example writesingleblockrf_datalogger(0, data_t o_send, 4, 2) returns succeeded if the data write has succeeded, failed otherwise.
AN3209 stts75 i 2 c commands doc id 17419 rev 2 39/42 appendix c stts75 i 2 c commands the m24lr64-r_datalogger_application_firmware uses the i2c_ee.c c library to interface with the stts75 temperature sensor. the library is available under c:\program files\m24lr64-r_datalogger_application\sources\m24lr64- r_datalogger_application_firmware or from start > m24lr64- r_datalogger_application > m24lr64-r_datalogger_application_firmware . the address byte defines the address of the stts75 on the i 2 c bus. it is defined by the sensor_address global variable of the i2c_ee.c #define sensor_address 0x90 c.1 acquire temperature the i2c_ss_config() function configures the stts75 in temperature acquisition mode. refer to the stts75 datasheet for a detailed description of the pointer byte and of the corresponding registers. . example i2c_ss_config (0x0183) configures the stts75 to perform one temperature acquisition with a resolution of 9 bits and store the value in the 16 bits temperature register. where pointer byte = 0x01 configuration byte = 0x83 configbytes = 0x0183. c.2 read acquired temperature the i2c_ss_bufferread() function allows to read a temperature acquisition value. table 15. i2c_ss_config() function description prototype i2c_ss_config (uint16_t configbytes) parameters configbytes : 2 bytes resulting from the concatenation of the pointer byte and configuration byte. pointer byte: bits p2 to p7 must always be set to 0. bits p0 and p1 define the pointer value corresponding to the register to be configured. configuration byte: value to be programmed in the configuration register. it is the last byte of the pointer set configuration register write frame. (see section : acquire temperature ). default value is 0x00. returned value errorstatus: succeeded failed
stts75 i 2 c commands AN3209 40/42 doc id 17419 rev 2 . example i2c_ss_bufferread(pbuffer, 0x00, 0x02) accesses the sensor temperature register and stores the read value in pbuffer. table 16. i2c_ss_config() function description prototype i2c_ss_bufferread(unit8_t* pbuffer, unit16_t readaddr, unit8_t numberbytetoread) parameters pbuffer : pointer to the buffer containing the 2-bytes temperature data this buffer contains the acquired te mperature coded on 2 bytes (refer to ta b l e 8 : relationship between temperature and digital output ). pbuffer[1] and pbuffer[ 2] are the msb and the lsb, respectively. readaddr : pointer byte. the pointer byte mu st be set to 0x00 to access the temperature register. numberbytetoread : number of bytes to read. returned value errorstatus: succeeded failed
AN3209 revision history doc id 17419 rev 2 41/42 6 revision history table 17. document revision history date revision changes 07-jun-2010 1 initial release. 15-apr-2011 2 replaced http://www.st.com/stonline/products/ support/micro/files/sttoolset.exe by http://www.st.com.
AN3209 42/42 doc id 17419 rev 2 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorized st representative, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2011 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of AN3209

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X